

Welcome to django-rstblog documentation

django-rstblog is a Django [https://www.djangoproject.com/] app to manage a blog, driven by articles written
using reStructuredText [http://docutils.sourceforge.net/rst.html], or Markdown [https://daringfireball.net/projects/markdown/syntax] or HTML [https://www.w3.org/TR/2017/REC-html52-20171214/].

This is its documentation.

Contents:

	Article author manual
	Article organization

	Article filename

	Article fields (aka: attributes)

	Content

	Advanced attributes

	Author manual end

	Site manager manual
	Installing diango-rstblog

	Base architecture

	Administering

	Articles administration

	Configuring

	Adding a banner in home page

General introduction

The basic idea is to adopt a hybrid publication model,
halfway between a static site (pure html) and a dynamic one (all inside a DB,
as Wordpress [https://wordpress.org/]).

In practice, the author writes his article locally, at his/her PC, then

	he puts a series of lines of text at the top of the article; they serve to
categorize it, indicating the language used, the title, and other attributes …

	and a line of text, of fixed format, which separates the attributes from the
article content.

Finally he calls an address (URL) of the site that allows him to upload the article.
If the user is not logged in to the site, this address asks for username and password.

When the article is uploaded to the site, django-rstblog uses its attributes
to classify it in the database. The content of the article is not loaded
in the DB; when necessary, it is resumed from the file uploaded on the site.

If the author wants to modify the content of the article (or its attributes),
he edits the file on his PC, then upload it again.

Why use django-rstblog?

What are the reasons that led us to this design choice? The following:

	we can always count on a local backup of all the contents of the site;

	we can work without an Internet connection, and connect only when
we want to upload;

	the program is extremely light, it runs smoothly on servers with
limited CPU capacity as with little RAM and HDU space (as long as accesses
are contained, and we haven’t this problem :-);

	we do not renounce the flexibility and speed of research that a DB allows;

	if we have a few articles 1 the DB can be implemented with the support library
of Python (sqlite3), without using big programs (in the sense
that they commit a lot of resources) as MySQL [https://dev.mysql.com/downloads/], or PostgreSQL [https://www.postgresql.org/community/], …

Features

The features that the app currently implements are:

	the index of articles, indicating the number of consultations
of each article and the main attributes;

	display of an article;

	upload of an article;

	complete reconstruction of the DB starting from the files of the articles uploaded to the site;

	administration of the DB contents using the Django’s admin interface; use this interface to:

	manage a list of authors of the articles;

	manage a list or arguments to classify the articles (an article must
belong to an argument);

	articles may have translations, they can be present in more than one language;

	indication of site statistics; in the sense of how many articles are
loaded, how many languages ​​are used, how many articles are present in each
classification topic and language.

Note that, at least by now, django-rstblog is capable to manage sites with
a single blog. It isn’t developed to manage multi-blogs sites.

Cons

What are the cons to the use of this environment? You must have a
good knowledge of Python/Django:

	to customize the app to your needs;

	to install it in a django project and in a production server.

License

This work is distributed under a
MIT License [https://opensource.org/licenses/MIT]
license.

References

This project is hosted on GitHub [https://github.com/l-dfa/django-rstblog.git]
Here you will find the complete environment
needed to develop the django-rstblog app. It means: not only the app, but
even a minimal django project that hosts it.

If you wish to see a website implemented using this app, you can navigate
to the author’s website [https://luciano.defalcoalfano.it].

And the full documentation is
hosted on Read the Docs [https://django-rstblog.readthedocs.io/].

Indices and tables

	Index

	Module Index

	Search Page

	1

	Not so few: with hundreds articles, everything reacts well.

author manual

author manual table of contents

	author manual

	Article organization

	Article filename

	Article fields (aka: attributes)

	markup

	language

	title

	created and modified

	slug

	summary

	authors

	category

	Content

	Link to other files

	Mathematical expressions

	Loading the article content

	Advanced attributes

	translation_of

	published

	offer_home

	image

	image_in_content

	Author manual end

Note

A note before to start.

Below default and optional items are indicative by now. In this version of
django-rstblog an optional field is set to its default value in case of load
of a new article. Otherwise, i.e. changing an article already present in DB,
an optional field is ignored, causing the previous value to survive.

If you wish to change an optional field value at article update, set it explicitly.
How? Continue reading :-)

Well, end of note, let’s start the work.

This is the scene: you, the author,
have availability of a working site that uses diango-rstblog to publish
your articles. So, someone (a site master) gave you:

	the URL of the site 7;

	your username;

	your password.

You’ll need them to upload the article: keep them safe and begin how
to write an article, … keep going …

Article organization

Let’s speak how organize an article that we’ll publish using diango-rstblog.

It is written in a file with two parts. The first part is about fields
categorizing our article. The second part stocks the content of the article.

The two parts are separated by a line containing the string:

.. hic sunt leones

Yes: two dots, space, and the phrase hic sunt leones. No more, no less, in a
single line 1.

So, reiterating the concept, we have this schema:

fields area (generally: one field every line)

optional empty line

.. hic sunt leones

optional empty line

article contents

Hereafter, as example, we report first lines of an
article about Marco Tullius Cicero, whose content is extracted from
wikipedia. It’s written using reST:

:markup: restructuredtext
:language: en
:title: Speaking about Cicero
:created: 2018-08-05 10:00:00
:modified: 2018-08-05 10:00:00
:slug: speaking-about-cicero
:summary: The Marcus Cicero's profile: informations and life.
:authors: Wikipedia
:category: latin literature history

.. hic sunt leones

Speaking about Cicero
======================

Marcus Tullius Cicero was a Roman statesman, orator, lawyer
and philosopher, who served as consul in the year 63 BC.
He came from a wealthy municipal family of the Roman equestrian
order, and is considered one of Rome's greatest orators
and prose stylists.

...

Article filename

Some speech about article file. How to name it? Our advice
is: create a rule and follow it. So you’ll have a clearer
working area.

As example, you can use a progressive number and a very short title note. So, these:

	159_full_text_search_python.rst

	160_full_text_search_python.en.rst

could be two files about an article regarding how to do full text search in python.
First is in default language, the second is in English language.

But whatever rule you’ll adopt, it will be right: django-rstblog is filename
agnostic. Just a caution: it would be better if file extension is related
to the format used; i.e.: .md for markdown text, .rst for reST text
and .html for html text.

Two warnings about filenames:

	1st: you cannot use the same filename to write
two different articles; this is obvious: on your PC, if you try to save a new
article using a used filename, you’ll scratch the old article;

	2nd: you cannot change filename to an article already uploaded; this is
less obvious, but trust me: it is true; if you need to change filename
to an old article, you must tell it to the site master: he knows
how to do it.

Now we’ll speak in more detail about fields and content areas.

Article fields (aka: attributes)

As we saw, fields categorize our article. So they are vital.

django-rstblog uses fields shown in previous example
article about Marco Tullius Cicero. There is one more, but we’ll
talk about it in a while.

By now, we exhort you to use all the fields shown in the example
and to pay attention to typos. At this early stage of development
(v0.1 as we write) there aren’t a lot of controls about syntax errors.

A single field has structure:

:fieldname: fieldvalue

django-rstblog decides fieldname(s). So you must use the right fieldname
without typos. Instead what to put in fieldvalue is up to you.

Let’s see the single fields meaning.

markup

This specify what markup language you use to write article content. Note the
phrase article content. In fact field area is ever written
using reST syntax.

Acceptable values for this field are: markdown, restructuredtext 2,
html.

Optional: no.

Example:

:markup: restructuredtext

language

This is about what language you use to write the article content.

Acceptable values are defined from your site configuration. And it’s
the site master responsability to configure it. Probably, at least
english (written as en) would be available. Languages are invoked
using their abbreviations; i.e. it for italian, fr for french,
es for spanish, and so on.

Optional: no.

Example:

:language: it

title

This is the article title. It is shown in the blog index to identify
your article and as a link to read it.

Acceptable values: whatever you want, provided that there are no other
articles with the same title in the blog. Article title must be unique
in the site. The maximum length is 250 characters.

Optional: no.

Example:

:title: Speaking about Cicero

created and modified

These are two fields showing:

	the first the article creation date and time;

	and the second the article last modified date and time.

Acceptable values. Whatever, in the format:
YYYY-MM-DD HH:MM:SS

Optional: yes.

Default value: current date.

Example:

:created: 2018-08-05 10:00:00
:modified: 2018-08-05 10:00:00

slug

Slug is the last piece of information used in the URL to reach your article.
Usually it reflects the article title to help the reader (and the web
crawler programs) to remember the article title.

Acceptable values. As titles, even slugs must be unique in the blog.
Futhermore, they must be composed of a subset of ansi characters. To stay
smooth, it’s usual to use only lowercase regular letters, with puntuation marks
and spaces substitued by dashes. Maximum length is 250 characters.

Optional: no.

Example. If your article would be reached by this url:
https://my.blog.org/blog/show/speaking-about-cicero, you’ll use:

:slug: speaking-about-cicero

summary

This field value summarizes your article content. It is shown in the
blog index page after the title of article.

Accepted values. No restrictions here. And this field can accept even
multiple lines contents. If you want to use multiple lines, you need
to indent it from the second line on.

Optional: yes.

Default: the empty string.

Example of multiple lines summary:

	summary

	The Marcus Cicero’s profile: informations and life. From
wikipedia in english language.

authors

Put here the name(s) of author(s) of the article (your name, I suppose :-).
In case of multiple authors, keep them in one line and separate them using a
comma (,).

Accepted values. Author name must be present in blog database. It is
responsability of site manager to insert the names of accepted authors.

Optional: yes.

Default: null.

Example:

	authors

	Lawrence of Arabia

category

This is the master of categorizations. It catalogs our article assigning
it to a main type.

Accepted values. Again, it depends on the configuration of your blog.
It is responsability of site manager to insert the accepted categories
in the blog database. And only values present in this database are
accepted by rstblog.

Optional: no.

Example:

:category: latin literature history

Content

What to say about content?

Here the author develops his true work: to write the articles contents.

You are free to choose the format type you like throught markdown,
reST and html.

Link to other files

Let us to give you some advices about other files you could refer
from your article.

First of all: the external hyperlinks. These are html pages available
thanks to other sites. And all three quoted formats allow to refer them.
As an example, this is an external hyperlink to wikipedia main page
using reST:

`wikipedia <https://en.wikipedia.org/wiki/Main_Page>`_

It shows word wikipedia and it jumps to its main page if you click
on the word.

Then, what about hyperlink to other article in the site? In this case,
use the (relative) article URL. Remember: it uses /blog/show as prefix,
and slug as article identifier. So to hyperlink to your article
Speaking about Cicero you can use (for example):

...
you can read our wonderful `article about Cicero </blog/show/speaking-about-cicero>`_
...

Note that it isn’t necessary to report the site domain (my.blog.org), and
we use the article slug.

And, last but not least, how hyperlink to other files (not articles) present
in our site? Here we need some technical clarifications to keep in touch.

In our site, files that aren’t articles can live on these directories:

	pages that hosts the site pages that aren’t articles;

	media that hosts other type of files, such as images,
audio, video, pdf, and so on.

Usually media has one subdirectory for every kind of hosted file. I.e.:

	media/images to keep images;

	media/pdfs to store pdf files, and so on.

As you can argue, if you would hyperlink to mylife.pdf file, you can
use:

...
`here </media/pdfs/mylife.pdf>`_ you can know something more about my life.
...

By now, these files must be uploaded to your site using some other kind of
software; maybe ftp, or remote copy. This means that you must be
a true site administrator to handle this files. If this is a problem
for you: stay tuned … In the future it’s
possible django-rstblog could upload even these files with the article.

Mathematical expressions

In case you need to write mathematical expressions, it’s simpler to use
Markdown as markup language. At the moment, django-rstblog is
configured to render math to html from Markdown.

Loading the article content

A last note. When you would publish your work, you need to call:

https://my.blog.org/blog/load-article

django-rstblog will ask you for your username and password. When you’ll
give them to it, it will ask for the article filename to load. Here you can
browse to the article file 3 and submit it, loading the request file.

Advanced attributes

Hereafter more fields, useful in case of more advanced functions.

translation_of

Surprise: a field name not quoted in the article about Marco Tullius Cicero!
What is this? You can send to django-rstblog even articles that are translations
of article already known by rstblog. If is this the case, in this field
you write the title of the original (translated) article.

If this field is missing, the article is an original article, meaning
it is a principal article whatever its language.

Accepted values. A title of an article present in the blog database.

Default value: Null 4.

Optional: yes.

Example. If you write a translation of article about Marco Tullius Cicero,
it could be as follow:

:markup: restructuredtext
:language: it
:title: Parlando di Cicerone
:created: 2018-08-05 10:00:00
:modified: 2018-08-05 10:00:00
:slug: parlando-di-cicerone
:summary: Il profilo di Marco Tullio Cicerone: notizie e vita.
:authors: Wikipedia
:category: latin literature history
:translation_of: Speaking about Cicero

.. hic sunt leones

Parlando di Cicerone
====================

Marco Tullio Cicerone è stato uno statista Romano, oratore, avvocato
e filosofo, che ha servito come console nell'anno 63 AC.
Veniva da una agiata famiglia cittadina dell'ordine Romano degli Equestri,
ed è considerato uno dei più grandi oratori e scrittori di Roma.

...

As you can see, in the fields area of this translation, we changed:

	the language indicator, to reflect the new language used in the translation;

	the title (remember: two equal titles aren’t possible in the same blog);

	the slug (like above: no equal slugs in the blog, and we would match
as near possible the title);

	the summary (maybe it would be read from Italians …).

And we added:

	the translation_of field, with a value of Speaking about Cicero, the
title of translated article.

published

This is about considering published, or not, the article.
Usually django-rstblog regards an article as published by default, unless the article
author sets this filed to no 5. An unpublished article:

	doesn’t compare in indexes;

	doesn’t compare in sitemap.xml;

	isn’t shown, even if you request it using directly the correct slug in URL.

But it’s counted in statistics.

Accepted values: yes or no.

Default value: yes.

Optional: yes.

Example:

:published: yes

offer_home

offer_home is about to show the article in the blog home index.

django-rstblog shows in its home some, usually 20 6, newer articles, checking their
creation dates.

If you if you want an article not to be counted between the articles to consider
in home, you can set this field to no.

Accepted values: yes or no.

Default value: yes.

Optional: yes.

Example:

:offer_home: yes

image

If you load an image in contents/media/images, using this field you can link
it from the summary in home page. In practice, you an use an image to characterize
the article. A kind of visual tag.

Moreover, you can show this image in the main window of the article.
You can control this behaviour using the next field: image_in_content.

Accepted values: the image filename as a string.

Default value: no.

Optional: yes.

Example:

:image: django-logo-negative.svg

image_in_content

If you indicate an image as an article characterizer, it is ever showed
in the index page. And it is possible to show it even in the window
of the article content.

This is the default behavior. If you wish, you can avoid to show this image
in the window of the article content, setting to no the field image_in_content.

This is desiderable if you have an article showing the same image in its contents.
In such a case django-rstblog would show this image twice. Not a beautiful behavior.

Accepted values: yes or no.

Default value: yes.

Optional: yes.

Example:

:image_in_content: no

Author manual end

That’s all folk about author manual.
Thank you to read it. We hope you enjoy it.

	1

	A point to rember. If you wish, this signal could be changed
by the site manager. And an anecdote. People say that this phrase was used in
the maps of ancient Rome, to indicate unexplored territories of Africa.
But there is no firm evidence that this is true. In this context we
adopt it to indicate that from here on we enter the unknown meanders
of the creation of the article.

	2

	Note the use of the full name of the sintax type.

	3

	Or directly type it, if you remember its full path and name.

	4

	Meaning: it is missing.

	5

	The no value is meaning. django-rstblog interprets any other value as yes.

	6

	This value could be modified, but it is an operation to do during the
application installation.

	7

	The site URL will be something of the type: https://site-domain/blog.

Site manager manual

site manager manual table of contents

	Site manager manual

	Installing diango-rstblog

	Prerequisites

	Installing

	Base architecture

	Available URLs

	Administering

	Author and Categories

	User

	Articles administration

	Deleting an article

	Changing an article filename

	Articles table reconstruction

	Configuring

	ARTICLES_DIR

	START_CONTENT_SIGNAL

	languages

	types

	FIELDS

	LIST_FIELDS

	DT_FIELDS

	BOOL_FIELDS

	HOME_ITEMS

	Adding a banner in home page

Ok, so you are the manager of a website that uses diango-rstblog to
publish articles from an author.

As a site administrator it is expected that you know how to carry out
the operations necessary to ensure the operation of the site, from
its installation, to routine activities during its operation.

We’ll see this operations in the following chapters.

Installing diango-rstblog

Prerequisites

Hereafter we assume you already have a Django project currently running.
Probably, even if not necessarly, it is installed using a virtualenv [https://docs.python.org/3.6/library/venv.html]. If
this is true, activate it before to do the operations here described.

And we assume that you are going to install in a computer having an
Internet connection.

Please, be sure to use a Python version 3.6 or newer, and a Django version 2.0
or newer.

Through the Internet connection, the Python installer (pip) will
upload django-rstblog and all of its dependencies:

	docutils;

	django-concurrency;

	Markdown;

	Pygments;

	python-markdown-math.

Installing

First of all, install diango-rstblog:

pip install django-rstblog

Then:

	In your project setting.py file:

1.1. Add rstblog to your INSTALLED_APPS like 1 this:

INSTALLED_APPS = [
 ...
 'django.contrib.sites', # django's sites framework
 'fullurl', # django-fullurl
 ...
 'rstblog',
]

1.2. check for presence of login parameters:

...
LOGIN_REDIRECT_URL = '/' # It means home view
LOGIN_URL = '/login/'
...

1.3. Add a RSTBLOG configuration section like this:

...
RSTBLOG = {
 'ARTICLES_DIR': os.path.join(BASE_DIR, "contents", "articles"),
 'START_CONTENT_SIGNAL': '.. hic sunt leones', # BEWARE: string on a single line, without other characters
 'languages': { 'en': 'englis', # 1st position is default language (functioning on py 3.6+)
 'it': 'italian', },
 'types': { 'article': 'article', # 1st position is default type (ok on py 3.6+)
 'page': 'page', },
 'FIELDS': {'markup',
 'image',
 'image_in_content',
 'atype',
 'language',
 'title',
 'created',
 'modified',
 'slug',
 'category',
 'published',
 'offer_home',
 'summary',
 'authors',
 'translation_of', },
 'LIST_FIELDS': {'authors',},
 'DT_FIELDS': { 'created',
 'modified', },
 'BOOL_FIELDS': { 'published',
 'offer_home',
 'image_in_content', },
 'HOME_ITEMS': 10,
}
...

1.4 check for presence of SITE_ID:

...
SITE_ID = 1
...

	In your project urls.py file:

2.1. include the rstblog URLconf:

from django.urls import include
...
path('blog/', include('rstblog.urls', namespace='rstblog')),
...

2.2. check for presence of login url:

from django.contrib.auth import views as auth_views
...
path('login/', auth_views.LoginView.as_view(), name='login'),
path('logout/', auth_views.LogoutView, {'next_page': settings.LOGIN_REDIRECT_URL}, name='logout'),
...

	About your project templates:

3.1. they must have a base.html template with this blocks
used from rstblog templates:

{% block title %}
{% block meta %}
{% block link %}
{% block content %}

3.2. check for the presence of templates/registration/login.html
used in login.

	In your project directory (where live manage.py), create the
directory contents/articles

	Run python manage.py migrate to create the django-rstblog models.

	Restart the http service and visit https://your-domain/admin/ 2 3
to create at least a Category with value uncategorized to load articles 4.

	Visit https://your-domain/blog/ to show an empty list of articles.

	Prepare an article on your PC as this one:

:markup: restructuredtext
:title: article
:language: en
:slug: article
:category: uncategorized

.. hic sunt leones

=========
Article
=========

This is the article content.

And this is a secod paragraph of the article.

	Visit https:/your-domain/blog/load-article to load the previous article.

	Now, if you visit again https://your-domain/blog/ you get a list with
an article, and if you click on title, you’ll show it
(url: https://your-domain/blog/show/article)

Base architecture

Here we’ll spend two words about how django-rstblog works.

It uploads articles in a directory as follows 5:

/usr/share/nginx/html/project/site/contents/articles

Usually there is at least another directory, to upload other media files:

/usr/share/nginx/html/project/site/contents/media

When a user uploads an article, django-rstblog loads it in the
aforesaid directory (.../articles), then it reads the lines that
categorize the article (its fields) and it updates consequently the
database tables. If we have a new article: it inserts new records,
otherwise it updates the existings ones.

So, user has only one basic operation available: load-article, available
at URL: https://your-domain/blog/load-article

Available URLs

Here are the URLs available by django-rstblog, that is its functions:

	blog/, it shows the newer articles; allowed to all users, even anonymous;

	blog/index/, it shows all the articles; allowed to all users, even anonymous;

	blog/index/<category>, it shows all articles of indicated category; allowed to all users, even anonymous;

	blog/load-article, it (re)uploads an article; allowed to known users, not anonymous;

	
	blog/reset-article-table, it rebuilds the DB contents from articles loaded in filesystem;

	allowed to known users, not anonymous;

	blog/show/<slug>, it shows the article of indicated slug; allowed to all users, even anonymous;

	blog/stats, it shows the django-rstblog statistics; allowed to all users, even anonymous.

Administering

Note

DB administration is a site functionality, not a django-rstblog one.

django-rstblog declares its DB structures, so the Django’s administration
can manage them.

So this function isn’t listed between the previous showed URLs,
and the request URL is https://your-domain/admin,
not https://your-domain/blog/admin.

Author and Categories

To manage author(s) and categories recognized by django-rstblog
it’s necessary to store their values in the project database.

To do so, call https://your-domain/admin/. If you aren’t logged in, the
site will ask your username and password. Type them (this account must have
adminstrative privileges) and you’ll get the admin interface to database
as follow:

[image: ../_images/admin.jpg]
To manage authors and categories you can click on these items showed in
the RSTBLOG section of the previous image.

User interface to operate this tasks is straightforward, so we don’t bother you
showing it.

User

An author of articles needs an account to upload articles. So you may have to
create one or more (in case of more authors publishing in the same blog)
accounts.

You can create accounts using the item Users at the section
AUTHENTICATION AND AUTHORIZATION.

This voice is useful even in case you need to change user’s password: edit the
user that have requested it.

Articles administration

Deleting an article

As you can see, delete an article now isn’t a function of django-rstblog.
So if a user wants absolutly to erase an article he/she must ask you to do
it, as site master.

How can you do it? With two steps:

	erase the record about the article;

	then delete the relative file in filesystem.

About the first step: be sure to delete the right record. Double check
title and filename of the article.

If you have only the title and/or the slug, you can retrieve the filename
reading it in the record of the article as in the image below (it is the field
titled File):

[image: ../_images/admin-2.jpg]
About the second step. It’s required because in case of Articles table reconstruction
(see below) the presence of the articles file recreates its record …

Changing an article filename

This is another operation not allowed to the author. In case of a request
from the author to change an article filename you must:

	change the filename in the record of the article (see the previous image);

	rename the file of the article in the server filesystem;

	tell the author to rename his/her filename in the authoring PC filesystem.

Articles table reconstruction

If needed it is possible force a complete Articles table reconstruction.

If you call URL .../blog/reset-article-table, django-rstblog will
erase all records in Articles table, then it will rebuild it reading
all files present in directory .../contents/articles.

Configuring

django-rstblog uses setup parameters from the django project’s settings.py.

Notably it reads the dictionary named RSTBLOG with this structure:

RSTBLOG = {
 'ARTICLES_DIR': os.path.join(BASE_DIR, "contents", "articles"),
 'START_CONTENT_SIGNAL': '.. hic sunt leones', # BEWARE: string on a single line, without other characters
 'languages': { 'en': 'english', # 1st position is default language (functioning on py 3.6+)
 'it': 'italian', },
 'types': { 'article': 'article', # 1st position is default type (ok on py 3.6+)
 'page': 'page', },
 'FIELDS': {'markup',
 'image',
 'atype',
 'language',
 'title',
 'created',
 'modified',
 'slug',
 'category',
 'published',
 'offer_home',
 'summary',
 'authors',
 'translation_of', },
 'LIST_FIELDS': {'authors',},
 'DT_FIELDS': { 'created',
 'modified', },
 'BOOL_FIELDS': { 'published',
 'offer_home', },
 'HOME_ITEMS': 10,
}

Let’s see the parameters in RSTBLOG.

ARTICLES_DIR

Directory containing the articles. Usually it is the directory:
project-base-dir/contents/articles.

Warning

If you wish to change this parameter,
test the new value extensively. This is because it is possible
have links in article relative from this directory to media directory.

So maybe necessary move the two directories in pairs.

Type: string.

START_CONTENT_SIGNAL

This is the signal used from django-rstblog to discern the fields part
of the article, from its contents.

You can change it, but keep it homogeneous: you cannot have some articles
with one signal and other articles with another one.

Type: string.

languages

The list of the human languages used to write articles. It is a dictionary,
and its first introduced key is the default language.

Authors must use language key to declare the used language in the article.

language value is displayed in html windows returned from django-rstblog
to browser.

Note

Insert order in dictionary is assured using Python v.3.6+.

This is the reason that requires the use of Python v.3.6+.

Type: dictionary.

Example:

...
'languages': { 'en': 'english', # 1st pos.is default language (functioning on py 3.6+)
 'it': 'italian', },
...

types

The list of types managed from django.rstblog. This is a reserved
dictionary, please don’t change it.

Value: it must be:

...
'types': { 'article': 'article', # 1st position is default type (ok on py 3.6+)
 'page': 'page', },

FIELDS

The list of fields managed from django.rstblog. This is a reserved
set, please don’t change it.

Value: it must be:

...
'FIELDS': {'markup',
 'image',
 'atype',
 'language',
 'title',
 'created',
 'modified',
 'slug',
 'category',
 'published',
 'offer_home',
 'summary',
 'authors',
 'translation_of', },

LIST_FIELDS

The list of fields managed from django.rstblog that are fields. This is a reserved
set, please don’t change it.

Value: it must be:

...
'LIST_FIELDS': {'authors',},

DT_FIELDS

As above about the datetime fields. Again: this is reserved, don’t alter it.

Value: it must be:

...
'DT_FIELDS': { 'created',
 'modified', },

BOOL_FIELDS

As above about the boleean fields. Again: this is reserved, don’t alter it.

Value: it must be:

...
'BOOL_FIELDS': { 'published',
 'offer_home', },

HOME_ITEMS

How many items django.rstblog shows in its blog home page, keeping the
newer articles. You can change it.

Type: integer.

Example:

...
'HOME_ITEMS': 10,

Adding a banner in home page

It is possible to add a banner in the home page of the blog site.

To achieve this effect, it is sufficient to load a page titled as banner.

It’s more complicated to remove the banner. You must delete the banner page
record from the blog database and remove the relative file from the
contents/pages directory.

It’s strongly suggested to name the banner file with a name such as
banner.html to avoid to forget it.

	1

	django.contrib.sites and fullurl are apps needed
to simplify use of django-rstblog from the hosting django project.
The first one is from Django, the second is the app
django-fullurl.

	2

	Or, you you are in a development environment, start the development
server and visit http://127.0.0.1:8000/admin/.

	3

	You’ll need the Admin app enabled and to know an admin account.

	4

	Classify the article using an appropriate category value is
mandatory. An article with a category value not present in the database (or
without this field at all) will not be uploaded.

	5

	It’s possible to change it, we’ll see how.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-rstblog documentation

 		
 Article author manual

 		
 Article organization

 		
 Article filename

 		
 Article fields (aka: attributes)

 		
 markup

 		
 language

 		
 title

 		
 created and modified

 		
 slug

 		
 summary

 		
 authors

 		
 category

 		
 Content

 		
 Link to other files

 		
 Mathematical expressions

 		
 Loading the article content

 		
 Advanced attributes

 		
 translation_of

 		
 published

 		
 offer_home

 		
 image

 		
 image_in_content

 		
 Author manual end

 		
 Site manager manual

 		
 Installing diango-rstblog

 		
 Prerequisites

 		
 Installing

 		
 Base architecture

 		
 Available URLs

 		
 Administering

 		
 Author and Categories

 		
 User

 		
 Articles administration

 		
 Deleting an article

 		
 Changing an article filename

 		
 Articles table reconstruction

 		
 Configuring

 		
 ARTICLES_DIR

 		
 START_CONTENT_SIGNAL

 		
 languages

 		
 types

 		
 FIELDS

 		
 LIST_FIELDS

 		
 DT_FIELDS

 		
 BOOL_FIELDS

 		
 HOME_ITEMS

 		
 Adding a banner in home page

_images/admin.jpg
Django administration

WELCOME, VIEW SITE / CHANGE PASSWORD / LOG OUT

Site administration

AUTHENTICATION AND AUTHORIZATION

Groups + Add Change

Users + Add Change

RSTBLOG

Articles + Add Change
Authors + Add Change
Categories + Add Change

Sites + Add Change

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_images/admin-2.jpg
Home > Rstblog > Articles » How start a Django project using virtualenv

Change article

‘ How start a Django project using virtualenv

Date: 2018-05-01 \ Today | ()

Time: | 142123 Now! @

‘ 137_article.en.rst ‘

Title:
Created:

Note: You are 2 hours
File:
Image:
Language: english v
Markup.

HISTORY VIEW ON SITE »

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

